Research Article

Renewable Energy Systems: Optimization Techniques for Enhancing Efficiency and Sustainability

Authors

  • Woodie Roads

Abstract

The growing global demand for sustainable and environmentally friendly energy sources has intensified interest in renewable energy systems (RES). However, to achieve optimal performance, efficiency, and sustainability, it is crucial to employ advanced optimization techniques in the design, operation, and integration of these systems. This paper reviews key optimization methods applied to RES, including solar, wind, hydro, and bioenergy systems, focusing on enhancing efficiency and sustainability. Challenges such as intermittency, resource variability, and grid integration are discussed, alongside solutions that involve advanced algorithms, hybrid systems, and machine learning techniques. Future research directions are also explored to guide further development in the optimization of renewable energy systems.

Article information

Journal

Journal of Engineering and Applied Sciences

Volume (Issue)

2 (1)

Pages

1-8

Published

2023-12-10

How to Cite

Renewable Energy Systems: Optimization Techniques for Enhancing Efficiency and Sustainability. (2023). Journal of Engineering and Applied Sciences, 2(1), 1-8. https://doi.org/10.70560/jv7xgz76

References

Abdelaziz, M., Hassan, M. A., & Ramadan, H. S. (2020). Optimization of wind energy storage systems using particle swarm optimization. Applied Energy, 115022. DOI: 10.1016/j.apenergy.2020.115022

Algarín, C., Arévalo, F., Gómez, D., & Ramírez, H. (2021). Hybrid renewable energy systems optimization using PSO and GA. Applied Energy, 117010. DOI: 10.1016/j.apenergy.2021.117010

Ayele, G. T., Kyeremeh, F., & Adu-Gyamfi, Y. (2021). Machine learning-based optimization for enhancing solar PV system performance. Applied Energy, 117063. DOI: 10.1016/j.apenergy.2021.117063

Cao, Y., Zhang, Z., & Li, H. (2021). Optimization of solar PV grid integration using MILP. Energy, 121342. DOI: 10.1016/j.energy.2021.121342

Fathollahi, M., Saffari, M., & Amidpour, M. (2020). Mixed-integer linear programming for optimizing hybrid renewable energy systems. Applied Energy, 115205. DOI: 10.1016/j.apenergy.2020.115205

Fathollahi, M., Saffari, M., & Amidpour, M. (2021). Sustainability optimization of energy storage systems in renewable energy projects. Renewable and Sustainable Energy Reviews, 110658. DOI: 10.1016/j.rser.2021.110658

Gómez, A., Rivera, M., & González, J. (2022). Hybrid GA-PSO algorithms for optimizing wind turbine design. Applied Energy, 118992. DOI: 10.1016/j.apenergy.2022.118992

Grassi, S., Bertoli, E., & Pini, A. (2020). Optimizing wind farm layouts using genetic algorithms. Renewable Energy, 115. DOI: 10.1016/j.renene.2020.07.115

Guo, L., Li, P., & Zhang, Z. (2020). Demand response optimization using PSO in renewable microgrids. Renewable and Sustainable Energy Reviews, 110395. DOI: 10.1016/j.rser.2020.110395Li, Z., Zhang, Y., & Wang, C. (2022). Artificial neural networks for solar irradiance prediction and optimization of PV system performance. Applied Energy, 118905. DOI: 10.1016/j.apenergy.2022.118905

Liu, W., Li, X., & Zhou, M. (2020). Mixed-integer linear programming for optimizing battery storage in renewable energy systems. Renewable and Sustainable Energy Reviews, 110289. DOI: 10.1016/j.rser.2020.110289

Mohamed, A., Said, Z., & Amin, M. (2021). Particle swarm optimization for tilt angle optimization in solar PV systems. Energy, 120936. DOI: 10.1016/j.energy.2021.120936

Naeem, M., Hussain, A., & Akram, U. (2020). Linear programming models for sizing and placement of solar PV systems. Renewable Energy, 94. DOI: 10.1016/j.renene.2020.02.094

Patil, V., Kulkarni, S., & Naik, R. (2021). Deep learning for predictive maintenance in photovoltaic systems. Renewable Energy, 111530. DOI: 10.1016/j.renene.2021.07.025

Ramos, A., Fernández, F., & Sáez, R. (2022). Mathematical optimization techniques for renewable energy systems. Renewable and Sustainable Energy Reviews, 112969. DOI: 10.1016/j.rser.2022.112969

Sarker, B., Aziz, S., & Islam, R. (2020). Genetic algorithms for optimizing renewable energy systems. Renewable Energy, 1005. DOI: 10.1016/j.renene.2020.05.007

Sayah, S., & Mezioud, H. (2021). Sustainability optimization in renewable energy systems. Energy, 120601. DOI: 10.1016/j.energy.2021.120601

Zhang, L., Li, Z., & Jiang, W. (2020). Optimization of hybrid renewable energy systems for grid integration. IEEE Transactions on Sustainable Energy, 2974395. DOI: 10.1109/TSTE.2020.2974395

Zhao, H., Zhang, S., & Zhang, T. (2021). AI-based optimization for wind farm predictive maintenance and operation. Applied Energy, 117056. DOI: 10.1016/j.apenergy.2021.117056

Zhang, L., Wang, J., & Li, P. (2021). Deep learning for energy generation forecasting in renewable hybrid systems. Renewable and Sustainable Energy Reviews, 111486. DOI: 10.1016/j.rser.2021.111486

Downloads

Views

5

Downloads

1

Keywords:

Renewable energy systems optimization techniques efficiency sustainability hybrid systems machine learning grid integration